
End-to-End Analysis of Event Chains under the
QNX Adaptive Partitioning Scheduler

Dakshina Dasari1 Matthias Becker2 Daniel Casini3 Tobias Blaß4

1Robert Bosch GmbH, Germany
2KTH Royal Institute of Technology, Stockholm, Sweden

3TeCIP Institute and Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy
4Robert Bosch GmbH and Saarland University, Saarland Informatics Campus (SIC), Germany

Abstract—Modern autonomous cars run classic AUTOSAR
applications alongside advanced driving assistance systems on
a single-vehicle computer. Ensuring safety and predictability in
such a complex system is challenging and requires temporal isola-
tion between the various components. A promising solution is the
POSIX-compliant QNX operating system: it meets the automotive
standards for functional safety at the highest level (ISO 26262
ASIL-D) and provides temporal isolation through the Adaptive
Partitioning Scheduler (APS), a resource reservation algorithm
that guarantees processor bandwidth to groups of threads. These
guarantees make it an ideal platform for composing diverse and
complex applications on centralized vehicle computers. However,
so far, there is no precise description or analysis of the APS
reservation mechanism in real-time literature. In this paper, we
provide the first description of the behavior of the APS from
a real-time point of view and validate the results by running
experiments on a real QNX platform. Based on the derived
scheduler rules, we develop a response-time analysis to bound
the end-to-end latency of event chains under APS. Finally, we
evaluate different design strategies on a case study based on a
real autonomous construction vehicle.

I. INTRODUCTION

Automotive E/E architecture is witnessing a major dis-
ruption on multiple fronts, driven by the requirements of
emerging automated driving applications and the aim to realize
a truly software-defined vehicle. On the hardware front, there
is a shift towards centralized architectures, marked by the
integration of previously distributed functions onto powerful
microprocessor platforms; on the software front, there is a shift
towards commodity POSIX-based operating systems (OS).
Classical AUTOSAR-based OS’es, which are designed for
static workloads with fixed interactions, are poorly suited to
the dynamically arriving, data-driven workloads of emerging
autonomous applications and do not cope well with newer
use-cases such as modular updates over the product lifetime.
As a consequence, POSIX-based operating systems like QNX
and Linux have emerged as promising alternatives. QNX, in
particular, is widely preferred as the base operating system by
many automotive OEMs, as it is ISO-26262 certified at the
highest level of assurance (ASIL-D).

The move towards a centralized architecture requires system
designers to integrate multiple independent applications with
different timing requirements on the same centralized plat-
form. They need to ensure temporal isolation among the exe-

cuting applications while still utilizing the system efficiently.
An effective approach to realize this are OS mechanisms that
provide guarantees on the provision of system resources like
CPU-time [1, 2] or memory bandwidth [3, 4]. This way,
designers can ensure that each executing application receives
enough resources to meet its timing requirements.

To this end, the Adaptive Partitioning Scheduler (APS)
offered by the QNX OS [5] is a promising candidate, and the
subject of this work. APS is a resource reservation mecha-
nism, where threads are grouped into virtual containers called
partitions. Each partition is guaranteed a certain amount of
processing bandwidth in a given interval of time, irrespec-
tive of what is executed on other partitions, which ensures
temporal isolation among co-running applications. In addition,
QNX APS optionally redistributes spare computation time if
partitions do not use their entire budgets, thereby avoiding
the problems associated with static allocations and enabling
efficient system utilization. Compared to the reservation-
based scheduler in Linux, the SCHED_DEADLINE scheduling
class [6], it supports more flexible deployments in that it allows
multiple threads to share the same reservation budget. This
flexibility is important in various practical applications, as
recently noted in the context of ROS 2 and DDS [7].

Despite the benefits provided by the QNX APS, its adop-
tion in practical systems is limited. A likely reason is that
neither a formal description of its behavior, nor a response-
time analysis, nor prior case studies regarding the practical
implementation issues on an actual platform are available.
One challenge towards such a description and analysis is
that although APS builds on well-established real-time system
concepts, the exact reservation mechanism is different from
every other reservation-based scheduler studied in the past.
First, unlike reservation servers [8], APS partitions are not
associated with a single priority but only act as a “container”
for the underlying threads, each of which has its own priority.
Second, they do not periodically recharge their current budget
to the nominal value but rely on a sliding accounting window
instead, which gradually replenishes the budget over time.
Third, it implements QNX-specific budget reclamation policies
and mechanisms to handle budget overruns.

In this work, we study the APS scheduler from a timing
perspective and consider the problem of bounding the end-

to-end latency of automotive applications. An automotive
application is typically realized as an event-chain consisting of
a coordinated chain of functions, which exchange information
to realize a given behavior (analogous to a graph, where the
nodes represent the functions and the edges represent the
messages passed between them). In these applications, event
chains are associated with an end-to-end deadline specifying
the latest acceptable time by which an input at the first task
of the chain leads to an output at the last task in the chain.

To guarantee such end-to-end deadlines, the resource reser-
vation mechanism implemented by APS can provide essential
benefits. Event chains can be decomposed and deployed to
APS partitions, which provide a guaranteed supply time irre-
spective of the workload running in other partitions. This is a
key mechanism to abstract from the interference that may arise
in a complex system and enables compositional analysis [2,
9]. However, such deployment does not come for free. The
system designer needs to answer several non-trivial questions
to guarantee that each application event chain meets its end-to-
end deadlines: how much processing time does each partition
need? How to set priorities for threads? And how to map
threads to cores in a multi-core platform?
Contributions. Answering these questions needs an under-
standing of the real-time behavior of event chains running on
APS. This calls for an analysis-driven solution, which can
be derived only after careful modeling of the APS. In this
paper, we make the following contributions. We formalize
the APS through a set of rules. Each rule has been validated
with a corresponding experiment on a Raspberry Pi running
QNX 7.1. By building on the proposed model, we propose a
response-time analysis for event chains running on the QNX
APS. Furthermore, we validate our analysis on a real platform
with a case study based on an autonomous construction
vehicle, which we use as a testbed to evaluate different design
strategies. Finally, we uncover some practical issues when
using APS for hosting event chains: we discuss quantization
effects in the time accounting of QNX and discuss the most
suitable interprocess mechanism with APS to realize chains.

II. OVERVIEW OF THE QNX APS

The Adaptive Partitioning Scheduler provided by QNX al-
lows implementing resource reservation for groups of threads
or processes, which are grouped within virtual containers
called partitions. Each partition can be configured with a
percentage of the overall processing capacity. This is specified
by configuring a per-partition budget, which determines the
amount of processing time that can be used by a partition in a
time window. APS throttles the CPU usage of each partition
by measuring its CPU usage in a configurable sliding window,
which is set to 100 ms by default, and it is common to all
partitions in the system. The APS prevents a thread that ex-
ceeded its budget in the time window from executing whenever
there are other ready-to-run threads in other partitions with
available budget. The partition’s budget is gradually restored
when enough time has elapsed.

APS performs time accounting for the budgets whenever
a scheduling event occur: examples of scheduling events are
the timer tick, a thread termination, or a message arrival.
Every time it executes, APS selects the highest-priority thread
whose partition has available budget [10]. It thereby combines
the principles of fixed-priority preemptive scheduling and
budget enforcements. APS allows the configuration of up to
32 partitions.

APS also provides the possibility to setup a critical budget,
which specifies the amount of time a partition is allowed to
use when its regular budget is depleted. The critical budget
may be configured to provide additional time to threads, but it
is supposed to be used rarely and only to serve highly latency-
sensitive applications. Furthermore, it provides a budget recla-
mation mechanism (called the idle-time mode) to improve
the average-case performance whenever there are no other
partitions with ready threads that can execute on the cores.
The idle-time mode allows partitions that are out of budget
to execute their ready threads, using two different policies to
select which ready thread to run: the first is by its static priority
(i.e., select the partition having the highest priority thread),
and the second one is by using a metric that considers the
ratio of the partitions’ budgets. APS also allows specifying a
maximum budget that limits the amount of time a partition
can overrun its normal budget: this allows to the application
designer to disable the idle-time mode. QNX also implements
other scheduling policies: in this work, we assume them to be
disabled.

III. MODELING AND VALIDATION

The purpose of this section is twofold. First, we introduce
the system model considered in this paper, both in terms
of workloads and for the QNX APS behavior. Then, we
corroborate our assumptions by reporting the results of some
validation experiments we performed on a real embedded
system running QNX.

A. System Model

The system considered in this paper is composed of a set
C = {c1, . . . , cm} of homogeneous processor cores running
the APS scheduler of QNX.
Workload Model. The processing platform executes a set of
applications composed of multiple sequential computational
activities characterized by cause-effect dependencies and that
need to respond within end-to-end deadlines. Computational
activities are modeled by a set T = {τ1, . . . , τn} of threads,
each of which releases a potentially infinite sequence of
instances. Each thread τi ∈ T is characterized by a worst-case
execution time (WCET) ei, a globally unique priority πi, and
a core affinity. We assume that threads are independent and do
not share resources. In principle, QNX allows arbitrary core
affinities; this paper focuses on partitioned scheduling, i.e.,
each thread has an affinity to only one core, as this setting is
particularly suitable to foster predictability [11, 12]. A thread
is said to be ready when it is eligible to be executed, and it is
said to be pending from its release to when it completes.

The various threads are co-related by cause-effect depen-
dencies, modeled by means of a direct acyclic graph (DAG)
D = (T , E), where threads represent vertices in the graph and
the set E ⊆ T ×T of edges encodes communication relations
among them. Each edge (τp, τc) ∈ E represents a producer-
consumer relation where τc consumes the data produced by τp
and characterizes a precedence constraint between τp and τc.
This means that an instance of τc is allowed to be run only
when the corresponding instance of τp is completed.

Threads may communicate either via shared memory or via
the network (e.g., using the QNX Neutrino native network-
ing [13]). The model thus also supports networks of distributed
threads, where each computing node runs APS. Each edge
(τp, τc) ∈ E is therefore characterized by a message-dependent
communication delay λp,c, which bounds the amount of time
required for data produced by τp to be available for τc.
We assume the communication delay to be negligible, i.e.,
λp,c = 0, when the two threads belong to the same APS
partition. We consider a discrete model of time, where each
time unit is an integer multiple of some basic units (e.g., a
processor cycle).
Event Chains. Some of the threads in the graph D have no
incoming or outgoing edges: these threads are said to be source
and sink threads, respectively. Each of source thread gives rise
to an event chain γx, i.e., a path in the graph.

The set of all event chains is denoted as Γ = {γ1, . . . , γa}.
Each thread is characterized by an event arrival curve ηi(∆),
which bounds the number of release events in any time
window of length ∆. Arrival curves are externally provided for
source threads; otherwise, they need to be derived whenever
needed for other threads, as extensively discussed later in
Section IV. Each chain γx is characterized by an end-to-end
deadline Dx.
Modeling the APS Scheduler. We consider an APS scheduler
composed of a set of partitions P = {P1 . . . Ps}. In APS, all
partitions share a common accounting window with length W
(typically set to 100 ms [5]). While APS is a flexible scheduler
that gives a lot of freedom to applications developers, we
restrict our analysis to a specific configuration that we deem
particularly suitable to foster predictability. Like threads, each
partition is logically assigned to only one core (i.e., all threads
that are assigned to the partition are assigned to the same
core). Each core cj ∈ C can host multiple partitions, which
are denoted with the set Pj .

Each partition Pk is associated with a nominal budget of Bk
time units. At any point in time t, Pk is also characterized by a
current budget bk(t). A partition Pk is ready when at least one
of its thread is ready, and it is running when one of its thread
is running. The set of all threads assigned to Pk is referred to
as Tk. We assume the critical budget of each partition to be
set to 0. An event chain γi ∈ Γ may span multiple partitions.

The APS scheduler keeps track of any scheduling event
that may cause a thread to start or stop running (e.g., a
message send or receive). Furthermore, it keeps track of the
last absolute time tl at which the timer interrupt executed or
a thread started or stopped running. If none of these events

𝑡𝑙 𝑡𝑡𝑙-W 𝑡 −𝑊

𝑊

accounting window at 𝑡

𝑊

accounting window at 𝑡𝑙
𝑥

𝑃𝑘
𝑡𝑖𝑚𝑒

𝑃𝑘 executes budget accounting

Fig. 1: Budget increment over a sliding window.

previously occurred, tl = 0.
We consider two possible settings for the idle-time

mode (i.e., budget reclamation): budget reclamation is ei-
ther disabled or distributes idle time in priority order. The
former is configured by setting the idle-time policy to
SCHED_APS_SCHEDPOL_LIMIT_CPU_USAGE and setting
the maximum budget max_budget_percent equal to the
nominal budget Bk. The latter is configured by setting the
idle-time policy to SCHED_APS_SCHEDPOL_DEFAULT.

In the following, we describe the behavior of the APS
scheduler with a set of rules, considering an arbitrary core
(partitioned scheduling) and a partition Pk. The rules are listed
in the second column of Table I.

The described behavior has been derived by studying and
interpreting the QNX documentation. Manuals are written
in natural language: hence, they are sometimes ambiguous.
Furthermore, since the QNX source code is not publicly
available (closed source), the provided descriptions cannot
be cross-verified by inspecting the source code. We therefore
performed a set of validation experiments – described in the
third column of Table I – to corroborate our findings with
empirical evidence. In addition to the rules reported in the
Table I, we also assume for the analysis we present next:
R8 When the budget of a partition is depleted, the partition

(i.e., the thread it is running) is immediately descheduled.
Whether this assumption is fulfilled by a QNX system

depends on the timer resolution, which may produce small
fluctuations depending on the fact that the budget accounting
is done both periodically, i.e., in correspondence of the system
tick interrupt-service routine (ISR, with period TISR < W)
and sporadically, i.e., in correspondence of system calls. This
practical aspect is extensively discussed in Section III-C.

B. APS Scheduler Validation

We validated the APS scheduler rules through a set of
experiments on a Raspberry Pi 4B with 4 CPUs and 4GB RAM
using the QNX 7.1 Software Development Platform (SDP).

Four different settings are executed on the platform to
validate the APS scheduler rules. For each of the settings,
the execution trace is obtained using the QNX event tracing
facility. The APS partition statistics are logged with a granu-
larity of 1 ms. The tracing tool provided by QNX reports the
cumulative time that tasks of a respective partition executed
within the last scheduling window [t −W, t). In the rest of
the section, we therefore use the term runtime to refer to
this quantity. In the following charts and tables, the budget

TABLE I: APS Scheduler Behavior and Validation.

Rule Validation
R1 At the system startup, bk(0) = Bk. That is, the current

budget of each partition Pk at t = 0, is initialized to
Bk.

Consider the APS traces in Fig. 2. The runtime in the
last window is 0 at the beginning of the execution
and therefore the maximum budget is available to the
partitions.

R2 When a timer interrupt or a scheduling event occurs at
time t, and Pk is running at t, then, bk(t) is decremented
by t− tl ≤ TISR < W .

In the trace of Setting A (Fig. 2a), as threads execute, the
corresponding runtime increases (and hence the budget
decreases) linearly over time.

R3 When a timer interrupt or a scheduling event occurs
at time t and tl ≥ W , then the accounting window
advances by t− tl units (Figure 1). The budget at time
t is then given by bk(t) = max(Bk, bk(tl) + x), where
x is the amount of time any thread of Pk executed in
[tl−W, t−W). Otherwise, if tl < W , there is no budget
increase. This rule is applied after R2.

In the trace of Setting A (Fig. 2a), τ2 has an overall
execution time of 150 ms. As it executes in [20, 100],
the runtime of P2 increases by x = 80 (overall) and
by time t = 100, P2 has consumed its entire budget of
80 ms. Then the budget starts recharging at t = 120, but
τ2 also starts executing and consuming the budget (due
to R2), and therefore the overall runtime (and budget)
remains constant. At time t = 190, τ2 has executed for
150 ms and terminates. So at time t = 190, we observe
that the runtime starts decreasing, i.e., the budget starts
increasing since thread τ2 has terminated and is no more
consuming the budget.

R4 When a timer interrupt occurs at time t = kTISR with
k > 0, and for each scheduling event, if after apply-
ing R2 and R3, the partition depletes its budget, i.e.,
bk(t) ≤ 0, and there exist at least one other partition
demanding processor time, the currently running thread
is descheduled.

In Setting C (Fig. 2c), budget reclaiming is enabled and
τ3 is added to partition P2. Because of this, τ1 in P1

cannot consume more than its allowed budget during
idle times as it was possible in Setting A without the
additional task.

R5 If budget reclaiming is disabled and bk(t) ≤ 0, the
partition is descheduled, irrespective of the presence of
other ready partitions.

In Setting B (Fig. 2b) budget reclaiming is disabled. A
ready thread therefore cannot run if its partition is out
of budget, even if idle time is available. This is the case
at t =190 ms where τ2 finishes executing its first job.
Partition 1 is out of budget (20 ms of execution every
100 ms) but has a ready task. The CPU stays idle.

R6 If budget reclaiming is enabled, let P ′ ⊆ Pj the set of
partitions such that for all Pk ∈ P ′ =⇒ bk(t) ≤ 0, for
each core cj ∈ C. If P ′ is not empty and there are no
other partitions on the same core with ready threads and
positive budget, the highest-priority thread in Pk ∈ P ′
runs.

In Setting D (Fig. 2d), the budget of partition P2 was
reduced compared to Setting C. At t =40 ms, both
partitions are out of their nominal budget and the threads
are scheduled in priority order.

R7 If a scheduling event occurs at time t, then the scheduler
runs the highest-priority thread that is ready and whose
corresponding partition Pk has budget bk(t) > 0 (if any).

Based on the performed experiments, a preemptive
priority-based scheduling has been observed.

is reported per core if not otherwise stated. This means, a
partition on a single core can have at most a budget of 100%.
Internally, QNX keeps track of the budget on a global level,
where 100% budget refers to the budget allocated to all cores.
Hence, on a 4 core platform the maximum budget allocated to
a core would be 25%. Regarding priorities, higher numerical
value corresponds to a higher priority. The top part of Figure 2
reports the execution trace of the executing tasks and the
partition runtime in the four settings. The bottom part of the
figure shows the runtime for two APS partitions, P1 (in blue)
and P2 (in red).

The first setting, referred to as Setting A in the fol-
lowing, executes two tasks (see Table II) on the same core
and assigns them to two different partitions P1 and P2. The
configuration of the two partitions is shown in Table III. Both
tasks are mapped to the same core and there are no other tasks
assigned to the two partitions. P1 has a budget of 20% and P2

has a budget of 80%. Note that τ1 is thus not schedulable with
the nominal partition budget alone. Idle time is redistributed
in priority order.

Setting B is identical to the previous one but disables
budget reclamation. Setting C extends on Setting A by

adding an additional task τ3 to partition P2 on core 3. Idle time
is again redistributed in priority order. The task τ3 consumes
the remaining budget of partition P2 after each job of τ2
completes. The higher priority task τ1 in P1 is not allowed
to execute in this case as idle time is no longer available.
Setting D utilizes two partitions with 20% budget each

(Table VI). Three tasks are mapped to the two partitions, all
on the same core. Idle time is redistributed in priority order. In
this setting, neither partition has enough budget to complete
its workload and thus all tasks have to rely on idle-time which
is distributed based on the thread’s priority.

TABLE II: Threads for Setting A-B

WCET [ms] Period [ms] Priority Core Partition
τ1 50 200 255 3 P1

τ2 150 200 254 3 P2

TABLE III: Configured Partitions for Settings A-B-C

Window [ms] Budget Global Budget Per Core
P1 100 5% 20%
P2 100 20% 80%

TABLE IV: Threads for Setting C

WCET [ms] Period [ms] Priority Core Partition
τ1 50 200 255 3 P1

τ2 150 200 254 3 P2

τ3 50 600 253 3 P2

TABLE V: Threads for Setting D

WCET [ms] Period [ms] Priority Core Partition
τ1 50 200 255 3 P1

τ2 100 200 254 3 P2

τ3 50 600 253 3 P2

TABLE VI: Configured Partitions Setting D

Window [ms] Budget Global Budget Per Core
P1 100 5% 20%
P2 100 20% 20%

It may appear that in Figure 2a, τ2 executes for a very
small amount of time (apparently as the same time as τ1)
shortly after 200ms. The observed effect is caused by the way
periodic threads have been implemented. In Figure 2a, this
happens between the completion of the first and start of the
second job of τ1. The thread performs a system call to suspend
τ1 until the release of τ1’s second job. This duration is very
short, in this case, 60 us. Due to plotting effects and minimum
line width, this looks larger in the resulting plot.

C. Quantization Errors in Budget Accounting

In QNX, time management is performed based on ticks [14].
The tick size is assigned depending on the CPU clock fre-
quency, and it is usually set to TISR =1 ms in most platforms.
This value has been also used for the validation in Table I.
The tick size is the basis of all time-related functions of the

OS and therefore defines the granularity of task parameters
that the OS can realize.

As discussed in Section III-A, APS performs the budget
accounting upon each timer interrupt or scheduling event.
A side-effect of this budget accounting method is shown
in Figure 3. In the considered setting, thread τ1 is created
at time t = 1.5 ms, in a partition with a full budget of
4 ms. The system tick ISR runs every millisecond, i.e., at
t = 0, 1, 2, . . . ms. Then τ1 starts running, and since no
other system call is triggered, it is descheduled only at time
t = 6 ms by the tick ISR. As a result, the corresponding
partition exceeded its budget by 0.5 ms, consuming processor
time that is reserved for other partitions. Budget quantiza-
tion issues occur in other well-established operating systems
like the Linux SCHED_DEADLINE scheduler [6]. Although
SCHED_DEADLINE provides the HRTICK_DL feature to
overcome budget quantization overruns (i.e., by using a one-
shot timer), it has this feature disabled by default as it may
introduce additional overhead [15]. Indeed, these effects are
commonly interpreted as operating systems overhead and
pragmatically accounted for by inflating the timing parameters
as for other overheads and variances from the theoretical
model.

Different from Linux, in QNX the budget accounting always
happens in the timer interrupt handler, even in the so-called
tickless mode [14], which is only intended for power-saving
purposes. Therefore, to the best of our knowledge, no mech-
anism is currently implemented to guarantee a fine-grained
budget accounting.

For the rare cases where this can matter, it is possible to
mitigate the problem by decreasing the period of the timer
interrupts (TISR) through the ClockPeriod() system call. To
this end, we performed the same experiment with a higher tick
resolution, i.e., with TISR ∈ {250, 500}µs (recall that previous
experiments used the standard tick resolution of 1 ms). In
both cases, the problem has been solved, and the budget has
been correctly accounted for without overruns, as shown in
Figure 4. It is worth noting that the size of the APS window
W is expressed in ticks. Therefore, the window size W needs
to be adjusted after any change to the tick resolution TISR.

However, decreasing the timer period comes at the cost of
increased overheads. The application designer should therefore
set TISR to the largest possible period that still provides suffi-
ciently accurate budget accounting for the given application.

D. Implementing Event Chains in QNX

QNX provides several communication methods that can
potentially be used to implement the event-chain model:
channels, pulses, and traditional synchronization primitives
like semaphores.

QNX channels are designed for the client/server paradigm.
They therefore implement synchronous communication, where
the client thread is blocked until the server thread sends a
reply [16]. They are therefore a poor fit for the precedence
constraints in the timing model, which require non-blocking
communication.

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms

Thread_1

Thread_2

Partition_1

0%
20%
40%
60%
80%
100%

Partition_2

0%
20%
40%
60%
80%
100%

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms

(a) Setting A (With Budget Reclamation), validates R2, R3

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms

Thread_1

Thread_2

Partition_1

0%
20%
40%
60%
80%
100%

Partition_2

0%
20%
40%
60%
80%
100%

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms

Thread_1

Thread_2

Thread_3

Partition_1

0%
20%
40%
60%
80%
100%

Partition_2

0%
20%
40%
60%
80%
100%

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms0 ms 100 ms 200 ms 300 ms 400 ms 500 ms

Thread_1

Thread_2

Thread_3

Partition_1

0%
20%
40%
60%
80%
100%

Partition_2

0%
20%
40%
60%
80%
100%

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms(b) Setting B (Without Budget Reclamation), validates R5

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms

Thread_1

Thread_2

Thread_3

Partition_1

0%
20%
40%
60%
80%
100%

Partition_2

0%
20%
40%
60%
80%
100%

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms

(c) Setting C (With Budget Reclamation), validates R4

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms

Thread_1

Thread_2

Thread_3

Partition_1

0%
20%
40%
60%
80%
100%

Partition_2

0%
20%
40%
60%
80%
100%

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms

(d) Setting D (With Budget Reclamation), validates R6

Fig. 2: Execution trace and partition budget usage of the for partitions P1 (blue) and P2 (red) in the first 600 ms of execution.
The task parameters are in the following order: period, WCET, priority and assigned partition. Each partition is described by
its budget Bk, and W =100 ms in all cases. The current budget bk(t) is illustrated in Setting A.

Thread_1

Thread_2

Thread_3

0 ms 1 ms 2 ms 3 ms 4 ms 5 ms 6 ms 7 ms 8 ms 9 ms

Fig. 3: Budget overrun of 0.5 ms due to a 1 ms resolution of
the system timer tick.

Thread_1

Thread_2

Thread_3

0 ms 1 ms 2 ms 3 ms 4 ms 5 ms 6 ms 7 ms 8 ms 9 ms

Fig. 4: Correct budget accounting with a 500 µs timer reso-
lution.

As a more light-weight communication method, QNX pro-
vides so-called pulses as a way to transmit small messages
of up to 40 bits in a non-blocking way. However, pulses
are treated in a special way under APS scheduling: all pulse
message handlers of a process run in the same partition, the so-
called pulse processing partition [5]. This makes it impossible
to isolate threads of the same process from each other.

We therefore decided to avoid QNX communication
channels and implement event-chains through traditional
semaphores, with one semaphore for each link of an event-

chain. Semaphores are lightweight, and do not affect the
APS scheduler. Data between threads is exchanged via shared
memory and semaphores are used to notify consumer threads
about new data items.

IV. ANALYZING END-TO-END CHAINS UNDER APS

This section discusses the analysis framework adopted in
this paper, which is inspired by Compositional Performance
Analysis (CPA) [9]. In particular, we consider the problem
of bounding the worst-case response times of the event chains
(corresponding to the end-to-end latencies) of each application
in the system under APS scheduling. The worst-case response-
time (WCRT) of an arbitrary chain γx = (τa, . . . , τz) ∈ Γ is
the longest possible time span elapsed from when an instance
of its first thread τa is released, to when the corresponding
instance of its last thread τz completes. Note that each thread
triggers at most one instance of each of its successor threads.
Moreover, a chain could also consist of a single thread with
|γx| = 1. We denote with the symbol Rx a bound on the
WCRT of γx.

To bound the WCRT, we consider each application chain
to be composed of a connected sequence of subchains, where
each subchain γk,h = (τx, . . . , τy) is a sequence of connected
threads, all of which are allocated to the same partition Pk. For
such subchains, a WCRT bound is obtained with the results
reported next in Section IV-A. However, a complete processing

𝑷𝟏

𝑷𝟐

𝑷𝟑

𝑷𝟒

𝒄𝟏 𝒄𝟐

𝝉𝟏 𝝉𝟐

𝝉𝟑 𝝉𝟒 𝜏5

𝝉𝟔

𝛄𝐱

𝝉𝟕

𝛄𝐱,𝟏

𝛄𝐱,𝟐

𝛄𝐱,𝟒

𝛄𝐱,𝟑

𝛄𝐱,𝟓
𝟏

Fig. 5: A chain spanning multiple cores and partitions, and
how it is divided into subchains.

chain may span multiple partitions, and may therefore be com-
posed of multiple subchains. The WCRT of the whole chain
is thus computed by leveraging the arrival-curve propagation
provided by CPA: arrival curves for non-source subchains are
derived from the arrival curves of previous subchains and their
response-time jitter.

Figure 5 provides an example of the considered setting,
where a chain γx is divided into five subchains γx,1 = (τ1, τ2),
γx,2 = (τ3), γx,3 = (τ4, τ5), γx,5 = (τ7), each one consisting
of a connected sequence of threads allocated into the same
partition Pk in a multicore platform with 2 cores.

The arrival curve of a subchain corresponds to the arrival
curve of the first thread in the subchain. Recall that λp,c refers
to the communication delay between the producer τp and con-
sumer, τc. The arrival curve for the source subchain, i.e., γx,1,
η1(∆) is provided externally, while for successor subchains
is computed as in [9, 17]: η3(∆) = η1(∆ + Rx,1 + λ2,3),
η4(∆) = η3(∆ +Rx,2 +λ3,4), η6(∆) = η4(∆ +Rx,3 +λ5,6),
and η7(∆) = η6(∆ + Rx,4 + λ6,7). Given the individual
response-time bounds for each subchain, the overall end-to-
end delay of γx is bounded with the sum of response times
and communication delays, i.e., Rx = Rx,1 + λ2,3 + Rx,2 +
λ3,4 +Rx,3 + λ5,6 +Rx,4 + λ6,7 +Rx,5.

A. Response-Time Analysis

Next, we discuss how to compute the response time for an
individual subchain under the assumption that a supply-bound
function sbf k(∆), which lower-bounds the minimum service
provided by a partition Pk, is known. Then, we show later in
Section IV-B how to derive such a function by leveraging our
formalization of the APS scheduler.

We define the set of higher priority threads relative to the
considered subchain γx,h as T hep

k (γx,h) = {τj ∈ Tk|πj ≥
πx,h}, where πx,h = min{πi | τi ∈ γx,h}. Therefore, the set
T hep
k (γx,h) includes all the threads in Pk with priority higher

than or equal to at least one of the threads in the chain.
A thread instance is said to be carried in at time t if it is

pending both at time t and at time t − 1. Similarly, a time
instant t is a quiet time for a partition Pk and a subchain γx,h
if no thread instances of threads τh ∈ T hep

k (γx) allocated to
Pk are carried in. An interval [t1, t2) is a busy window for a
subchain instance of γx,h if both t1 and t2 are quiet times for
Pk, no quiet time occurs in (t1, t2), and the subchain instance
is released in [t1, t2). A subchain instance is released when an
instance of its first thread is released.

t = 0 - quiet time – start of the busy window

𝐴 – subchain instance under analysis is released

𝐴 + 𝑅𝑖
∗(𝐴) – subchain instance under analysis completes

self-interference from other instances of 𝜏𝑒 released in [0,A]

interference from other higher or equal priority threads (except 𝜏𝑒) released in [0, 𝐴 + 𝑅𝑖
∗ 𝐴]

quiet time – end of the busy window

𝐴∗

delays due to APS lack of supply in [0, 𝐴 + 𝑅𝑖
∗ 𝐴)

Fig. 6: Timeline showing relevant time instants and intervals
for Lemma 1.

We further define the request-bound function of a thread τi
as rbfi(∆) , ηi(∆) · ei. Given a set of threads T ′, its cu-
mulative request-bound function is defined as RBF (T ′,∆) ,∑
τh∈T ′ rbfh(∆).

Lemma 1. Assume A ≥ 0 is the time, relative to the beginning
of an arbitrary busy window under analysis, in which an
instance of a subchain γx,h = {τs, . . . , τe} is released, i.e.,
an instance of its first thread τs is released. If Rx,h(A) be the
least positive value satisfying

sbf k(A+Rx,h(A)) ≥ rbfe(A+ 1)+

RBF (T hep
k (γx,h) \ {τe}, A+Rx,h(A) + 1),

(1)

then Rx,h = max{Rx,h(A) | A ≥ 0} is a response-time bound
for γx,h.

Proof. Consider an arbitrary subchain instance under analysis,
released at time A. It can be delayed by: (i) previously released
instances of the same subchain, (ii) other subchains running in
the same partition, (iii) due to lack of supply due to APS. The
time interval in which interfering instances can be released
are graphically shown in Figure 6. Those due to (i) can be
decomposed in two mutually-exclusive contributions, due to:
(a) the last thread τe in the subchain, and (b) to other threads
in the chain, respectively.

Interference due to the last thread in the chain is bounded by
rbfe(A+ 1) since instances of the same thread are processed
in order of arrival. Therefore, subsequent instances of the last
thread τe become ready only when the one under analysis
completes, thus excluding self-interference due to instances
released after A in the arbitrary busy window under analysis.

Interference due to (ii) and (b) can instead be due to
instances released in the whole interval [0, A+Rx,h(A)]. Each
thread with higher or equal priority than the lowest priority of
a thread in γx,h (and different from τe considered before) can
delay at least one of the threads in γx,h.

These threads are contained in the set ∈ T hep
k (γx,h) \ {τe},

which also includes the self-interference due to threads of the
same chain γx,h\{τe} (again, and different from τe considered
before).

Since each interfering thread τh ∈ γx,h \ {τe} interferes up
to rbfh(A+Rx,h(A) + 1) time units, the interference due (ii)
and (b) is bounded by RBF (T hep

k (γx,h)\{τe}, A+Rx,h(A)+

1). Delays due to (iii) are considered in the supply-bound
function, which lower-bounds the minimum service provided
in [0, A+Rx,h(A)). The lemma follows.

In essence, Lemma 1 converges when the guaranteed mini-
mum service matches the maximum total demand of the sub-
chain under analysis and the interfering threads. Lemma 1
bounds the response time of a subchain instance released at a
given point in time A, and it requires to check the condition
in an impractical continuum (i.e., all times A ≥ 0). Therefore,
practical applying the condition requires both a bound and a
discretization on the analysis interval.

To this end, we assume the busy window to be bounded; if
that is not the case, e.g., when the processor is overloaded,
no response-time analysis is possible. This assumption is
analogous to assuming an overall utilization that does not
exceed 100% of the partition capacity [18].

Similar to [17]–[19], the search interval can be bounded
with the smallest positive value satisfying the following in-
equality:

sbf k(A∗) ≥ RBF (T hep
k (γx,h), A∗), (2)

where RBF (T hep
k (γx,h), A∗) upper bounds the total workload

released in [0, A∗], and sbf k(A∗) lower bounds the service
provided by the partition Pk in the same interval. Intuitively,
Equation (2) follows because, if busy windows are bounded,
no thread (and thus no subchain) can have a relative release
time longer than A∗, since there is no busy window longer
than A∗ [18].

By observing that, as in [17], in Equation (1) only term
rbfe(A + 1) depends only on A (while RBF (T hep

k (γx,h) \
{τe}, A+ Rx,h(A) + 1) and sbf k(A+Rx,h(A)) depends on
the whole interval), we can define a discrete search space for
activation offsets of γx,h = {τs, . . . , τe} analogously as in
prior works [17], i.e.,

Ax,y , {A | 0 ≤ A ≤ A∗ ∧ rbfe(A+ 1) 6= rbfe(A)} ∪ {0}.
(3)

B. Deriving a Supply-bound Function for APS

Recall that the APS scheduler is composed of a set of par-
titions P = {P1 . . . Ps}, where all partitions share a common
accounting window with length W . Each thread τi ∈ T in the
system, belongs to one unique partition. In the following, we
seek to find a lower bound on the processor time available
to partition Pk in time interval ∆. We proceed as follows.
First, we discuss the conditions required to ensure that each
partition can correctly deliver the promised budget to assigned
threads, i.e., ensuring the so-called global schedulability of
partitions (similar to the context of reservation servers [1]).
Second, we target the real-time guarantees internal to each
partition. To this end, we define and prove the definition of a
supply-bound function for a system without budget reclaiming
enabled (Sec. IV-B2). Third, we show that the same definition
is safe also when enabling budget reclaiming (Sec. IV-B3).

1) Guaranteeing the budget provisioning: We start posing
a fundamental building block for our analysis: the condition
required to ensure that none of the cores are overloaded as a
result of a wrong budget configuration. This is required by the
local schedulability analysis, which needs that the promised
budget supply is actually delivered to the partition, which may
not happen if the overall partitions’ demand is higher than
the time available to the core. Lemma 2 shows that this can
be ensured as long as the sum of the budgets of partitions
allocated to a core is less than the window size [10].

Lemma 2. Let Pj denote the set of partitions allocated to
core cj . Then, a core cj is not overloaded if:∑

Pk∈Pj

Bk ≤W. (4)

In this case, each partition Pk ∈ Pj can correctly deliver Bk
units of supply to pending workloads every W time units.

Proof: By contradiction, assume that Equation (4) is
satisfied, but there exists a partition Pk ∈ Pj that delivers
less than Bk units of supply every W time units to pending
workloads. In this case, it means that either: (i) the budget
did not increase as the accounting window advanced, or (ii)
there are other partitions in Pj that exceeded its assigned
budget in the accounting windows, or (iii) APS was not able
to deliver Bk units of supply to each Pk ∈ Pj with pending
workloads in the accounting window. Case (i): is impossible
due to rule R3. Case (ii): is impossible because: (a) by rules
R2, R8, and R4 and R5, the budget is correctly decremented
(R2) and the running partition is immediately descheduled
when it depletes its current budget (R8) if there is other
pending workload (R4 and R5). Case (iii): APS is not able
to deliver the assigned budget if the sum of the budgets Bk
due to partitions Pk ∈ Pj allocated on cj is greater than the
accounting window size. Since each accounting window has
length W , this is impossible because Equation (4) is satisfied
by assumption. The lemma follows.

2) Analysis without considering budget reclaiming: We
start defining sbf k(∆), which is graphically shown in Figure 7.

Definition 1. The supply-bound function of an arbitrary
partition Pk ∈ P is defined as:

sbf k(∆) ,

⌊
∆

W

⌋
Bk + max(0, (∆ mod W)− (W −Bk)).

Next, we leverage two simple properties of an APS partition.

Property 1. [APS Service] An APS partition provides at
most ε time units of service in an interval of length ε, i.e.,
∀∆ ≥ 0, ε ≥ 0, sbf k(∆ + ε) ≤ sbf k(∆) + ε.

Furthermore, we note that a supply-bound function for an
APS partition is super-additive [20].

Property 2. [Super-additivity] The supply-bound function is
super-additive, i.e., ∀∆ ≥ 0, ε ≥ 0, sbf k(∆ + ε) ≥
sbf k(∆) + sbf k(ε).

Finally, Property 3 establishes the minimum supply pro-
vided in an interval of time with length equal to the window
size W .

Property 3. [Service in a budgeting window] If ∆ = W and
the system is not overloaded, it holds sbf k(W) = Bk.

Proof: The property follows trivially as a corollary of
Lemma 2.

Leveraging Properties 1, 2 and 3, Lemma 3 shows that
sbf k(∆) as defined in Definition 1 indeed lower bounds the
service time provided by an APS partition for the case in which
budget reclaiming is disabled.

Lemma 3. Let Pk be an arbitrary APS partition. If budget
reclaiming is disabled then the minimum amount of service
provided by a APS partition is lower-bounded by sbf k(∆) as
defined in Definition 1.

Proof: We first show that for any ∆ ≤ W , sbf k(∆) =
max(0, Bk−W+∆). Recall from Property 1 that an APS par-
tition provides no more than one time unit of supply per time
unit. Therefore, it holds that ∀d ≥ 0, n ≥ 0, sbf k(d+ n) ≤
sbf k(d) + n. With W ≥ d and n = W − d this implies
sbf k(W) ≤ sbf k(d) +W − d, which is equivalent to

sbf k(d) ≥ Bk −W + d

since sbf k(W) = Bk (Property 3). The supply is also trivially
lower-bounded by zero. Therefore, sbf k(∆) = max(0, Bk −
W + ∆) lower-bounds supply for any ∆ ≤W .

For ∆ > W we exploit super-additivity (Property 2). Since⌊
∆
W

⌋
W + (∆ mod W) = ∆, it holds that

sbf k(∆) ≥
⌊

∆

W

⌋
sbf k(W) + sbf k(∆ mod W)

=

⌊
∆

W

⌋
Bk + max(0, Bk −W + (∆ mod W))

Fig. 7: Two representations of the supply-bound function. The
left side denotes the budget usage pattern to minimize the
supply in the interval ∆. Here ∆1 = b(∆/W)c · W and
∆2 = ∆ mod W is the rest of the window. The shaded
region shows a possible budget usage to reduce the supply
in the window under consideration. The right side shows how
the supply increases over a period of time.

Thus Lemma 3 captures the supply available to partition Pk
in an interval of length ∆. The first portion of the equation
refers to the integral units of budget received in each of the
budgeting windows, while the second portion captures the
partial budget received. It can be noticed that the partial budget

computation assumes that we receive the budget at the far
end of the interval to compute the minimum supply. If the
fractional portion of the interval (∆ mod W) < W − Bk,
then the partition receives no budget in that fractional part.

An alternative representation is shown in Figure 7 where
∆1 = b(∆/W)c ·W refers to the region where integral units
of budget are received and ∆2 refers to the region where a
fractional budget is received.

As an example, let us consider partition Pk with Bk = 3,
∆ = 28, and a window size of W = 10. Then the partition
receives two full budget allocations of worth 6 in the first 20
time units. Later in the tail end of 8 time units, it receives no
budget in the first (10 − 3) = 7 time units and another unit
later. In other words the partition receives 3 − (10 − 8) time
units in the tail end of the interval. Finally the total budget is
7 units.

It must be pointed that in the supply bound formulation, the
silent period of (W −Bk) can be a source of pessimism, but
given the nature of compositional analysis [2], which relies
on only information regarding the current partition, such an
overhead is difficult to avoid, and is normally amortized over
longer window periods.

3) Analysis considering budget reclamation: We now con-
sider the case in which each partition Pk can consume, in ad-
dition to its normal budget Bk, a maximum of Ik < (W−Bk)
idle time units, when there are no ready threads in other
partitions. This case occurs when the system is under-loaded
and therefore partition Pk consumes an extra idle time budget
of Ik in its previous window and must pay it back in the
interval under analysis.

To start, Lemma 4 proves that the maximum length of the
silent period is still bounded by W −Bk as in Lemma 3.

𝑡𝑖𝑚𝑒

𝑡 − 𝐵𝑘 − 𝑡′ 𝑡 − 𝑡′ 𝑡 − 𝐵𝑘 − 𝑡′ +𝑊 𝑡 − 𝑡′ +𝑊𝑡𝑠

t-W 𝑡𝑠 𝑡𝑟

𝑡𝑑: 𝑏𝑢𝑑𝑔𝑒𝑡 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑜𝑛
𝑜𝑐𝑐𝑢𝑟𝑠 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑡 𝑡𝑠 +𝑊 𝑡𝑟 +𝑊

𝑊

𝑊

𝑊

Fig. 8: Relevant times for the proof of Lemma 4

Lemma 4. Let Pk be an arbitrary APS partition with budget
Bk, and (t, t+ ∆] be the window under analysis. Then if Pk
consumes an additional idle-time budget 0 < Ik ≤ (W −Bk)
in the last accounting window (t−W, t], the maximum length
of the silent period experienced at the beginning of (t, t+ ∆]
is bounded by W −Bk.

Proof: Consider an arbitrary interval (t, t+∆]. There are
two mutually-exclusive cases: (i) bk(t) > 0 and (ii) bk(t) ≤ 0.
In case (i), the silent period has length 0. Consider now case
(ii). Let ts ∈ (t −W, t] (shown in Figure 8) be the first time
in which a thread of Pk executes in the previous accounting
window. Also let tr ∈ (ts, t − Bk) be the time instant in

which a thread of Pk starts executing the last Bk units of time
in the last accounting window. That means that the idle time
consumed, in effect is Ik = tr − ts. Since, by assumption,
Pk used additional idle-time budget in (t − W, t] it is not
descheduled when its current budget reached 0 (rule R6), and
therefore its current budget became smaller than zero (rule
R2). The first budget replenishment starts then at ts+W (rule
R3), but the current budget is negative (and equal to −(tr−ts))
and remains smaller than or equal to zero up to when all the
idle time has been paid back, i.e., up to time tr +W . At time
tr +W , bk(tr +W) > 0.

The length of the silent period of Pk is given by the
difference from time tr + W and the time td ∈ (tr, t] in
which Pk depletes the budget, i.e., tr +W − td. To maximize
the length of the silent period experienced at the beginning of
(t, t+∆] we need to maximize the amount of time the intervals
(td, tr+W] and (t, t+∆] overlaps. This happens when td = t.
Then we need to chose tr so that to maximize tr+W−td. By
construction tr ∈ (ts, t−Bk], and hence we set tr = t−Bk,
and we obtain tr + W − td = t − Bk + W − t = W − Bk,
proving the lemma.

With Lemma 4 in place, Property 1 still holds when budget
reclaiming is enabled, and therefore the same arguments of
Lemma 3 can be applied to show that Definition 1 still holds
even when considering budget reclamation.

C. Handling quantization errors in budget accounting

As discussed in Section III-C, budget accounting is per-
formed only in correspondence of the periodic tick ISR and
when a system call triggering a scheduling event is called.
As a result, budget overruns with a time granularity up to the
period TISR (set to 1 ms by default) of the tick ISR are possible.
To keep the analysis simple, we excluded this possibility by
means of rule R8, which assumes partitions to be immedi-
ately descheduled in correspondence of budget exhaustion.
Furthermore, mitigation strategies based on reducing TISR are
discussed in Section III-C. Other pragmatic countermeasures
are possible, e.g., based on accounting for a “safety margin”
when ensuring Equation 4, (e.g.,

∑
Pk∈Pc

Bk ≤ α · W ,
with α = 0.95) to account for this and other overheads
and variances to the theoretical model (e.g., in the WCETs’
accuracy that are often hard to estimate in multicore plat-
forms). Similar precautions are taken in other schedulers, e.g,
SCHED_DEADLINE in Linux. Alternatively, the derivation of
the supply-bound function can be extended to pessimistically
account that every time a high-priority thread running in a
partition starts executing, it can execute TISR units of time more
than expected due to budget quantization. However, both this
and the derivation of a fine-grained bound that is aware of the
budget quantization phenomenon is left as future work.

V. EVALUATION

This section presents the results of two evaluation studies
we performed to evaluate the proposed analysis. We start
the discussion by considering a relatively simple synthetic

application; then, we report the results of an evaluation we
performed on an autonomous construction vehicle case study.
To this end, we implemented a prototype of our analysis on
top of the pyCPA framework [21]. Furthermore, we also run
the same event chains considered by the analysis on a real
platform consisting of a Raspberry Pi 4B with 4 CPUs and
4GB RAM and the QNX 7.1 Software development Platform.

A. Evaluation on a Synthetic Application

To evaluate our approach, we first study a relatively simple
example case before we apply it to a larger industrial case
study. In the first set of experiments we study a simple system
consisting of three threads, τ1, τ2, and τ3 (see Table VII).
All threads are allocated to the same core. Two chains are
specified, γ1 = (τ1, τ2) and γ2 = (τ3). γ1 is allocated to a
partition P1 and γ2 to a partition P2.

TABLE VII: Example Application

WCET [ms] Period [ms] Priority Core Partition
τ1 20 100 255 1 P1

τ2 10 – 254 1 P1

τ3 40 100 253 1 P2

Analysis-driven design of the budgets. Different budget as-
signments are evaluated first by running the analysis. For this,
the budget of P1 is gradually increased while the remaining
budget is assigned to P2. As visible in Fig. 9, solutions are
found for budget values of P1 in the range from 32% to 58%.
As expected, an increasing budget for P1 has a significant
effect on the latency of γ1 while the latency of γ2 increases
only marginally. This is because γ2 consist of only a single
thread. This highlights the benefits of our analysis, which
allows finding non-trivial trade-offs in the design of real-time
applications running on QNX, without requiring to actually
deploy the system with different budget values and observe the
results, and providing analytical guarantees for the application
timing constraints that would not be possible to ensure by just
running the application.

30 35 40 45 50 55

APS Partition Budget of P1

0

50

100

150

200

250

300

E
n
d
-t

o
-E

n
d

b
o
u
n
d

(m
s)

γ1

γ2

Fig. 9: End-to-End bound of γ1 and γ2 with varying budget.

Comparing measurement against analysis results. In this
experiment, we compare the analytical bound on the latency
of γ1 against the largest observed values within experiment
runs of 20 s on the QNX platform in the standard configuration
with budget reclaiming enabled. γ1 is deployed on a core of
the platform within its partition P1. A second partition is added

0 20 40 60 80 100

Additional higher priority load [%]

0

10

20

30

40

50

60

70

80

L
a
te

n
c
y

(m
s)

Analytical bound for γ1

Largest measured latency for γ1

Fig. 10: Comparison of observed latency for γ1 against the
analytical worst-case bound and varying higher priority load.

to the same core that consumes the remaining capacity. This
partition includes another interference inducing load thread
with a period of 10 ms that is used to consume all the idle time
that would otherwise be available to γ1. In different experiment
runs, the execution time of the higher priority load thread is
increased from 1 ms to 10 ms and the largest observed latency
of γ1 is recorded.

Fig. 10 presents the results. When the interference by the
other thread is low, the measured latency of γ1 is lower
than the one predicted by the analysis. Indeed, thanks to idle
time reclamation, γ1 is allowed to use more budget than the
assigned one. As the load thread demands more time, the
observed latency values increases, and it converges to the an-
alytical bound once the load increases to 60%, demonstrating
the tightness of our approach for this application.

B. Autonomous Construction Vehicle Case Study

The case study investigates a tactical decision-making sys-
tem of an autonomous construction vehicle [22]. The system
implements a behavior generation and trajectory planning
algorithm for operation in dynamic environments such as
construction sites. It identifies traffic participants, considers
their likely future behavior, and selects a suitable response
out of a set of possible actions.

The application consists of 11 threads, as described in
Table VIII. The source thread is triggered periodically with
a period of 300 ms. The original application is designed for
a single-core platform and executes all threads sequentially.
However, the application can be parallelized to allow de-
ployment on multiple cores of a multi-core platform without
altering its functionality, as shown in Fig. 11. The main timing
requirement is specified for the chain γ1 that spans from ein
to eout and has a end-to-end deadline of 600 ms.

The application is divided into five sub-chains γ1,1 to γ1,5.
Each sub-chain is assigned to a dedicated APS partition. The
APS scheduler is configured with a window size of 100 ms,
and each APS partition is configured with its budget according
to Table IX. By running our analysis, the application designer
is then able to determine whether this configuration (i.e.,
priorities, threads-to-core and threads-to-partition allocation,
and budgets) allows meeting the timing constraint of 600 ms,
by computing a bound on the end-to-end latency of 421.8 ms.

𝑒!" 𝑒#$%

𝜏!

C
or

e
1

C
or

e
2

C
or

e
3

Fig. 11: Use Case: Tactical decision making system of an
autonomous construction vehicle.

TABLE VIII: Threads of the Case Study

Name WCET Prio Core Part
τ1 MPDM 2,2 250 1 P1

τ2 Sim Crowd 0,1 249 1 P1

τ3 Move Vehicle 12 248 3 P2

τ4 Vehicle Force 169,1 247 3 P2

τ5 Move Pedestrian 3,3 246 2 P3

τ6 Pedestrian Force 85,5 245 2 P3

τ7 Follow Vehicle 0,1 244 1 P4

τ8 Follow Force 6,4 243 1 P4

τ9 Stop Vehicle 0,1 242 1 P5

τ10 Cost 1,2 241 1 P5

τ11 Optimal Policy 0,1 240 1 P5

Analysis-driven design of the budgets. This experiment
evaluates the end-to-end latency of subchain γ1 when the
allocated budget is varied. Each curve in Fig. 12 is recorded
by varying the budget allocated to the specific partition from
5% to 100% in steps of 5%, while all other partitions have a
budget of 100% and the APS window size is set to 100 ms.

0 20 40 60 80 100

APS Partition Budget

0

100

200

300

400

E
n
d
-t

o
-E

n
d

b
o
u
n
d

(m
s)

γ1,1

γ1,2

γ1,3

γ1,4

γ1,5

Fig. 12: Impact of varying budget for each subchain on the
end-to-end latency, for the case-study.

The results are reported in Fig. 12. A large effect on
the resulting latency can be seen for γ1,2 and γ1,3 as these
subchains contain threads with high execution times. γ1,1 and

TABLE IX: Configured Partitions for the Case Study

Window [ms] Budget Global Budget Core
P1 100 64% 16%
P2 100 80% 20%
P3 100 44% 11%
P4 100 12% 3%
P5 100 14% 3,5%

γ1,5 show nearly identical results. These subchains contain
only very light threads, and the main effect on the latency,
therefore, comes from the silent period W −Bk
Running the case study on a real platform. In the last experi-
ment, the case study is deployed on the real platform, configur-
ing the APS scheduler with and without budget reclaiming, and
the end-to-end latency is recorded for consecutive instances of
γ1 in a timespan of 20 s.

0 10 20 30 40 50 60

Instance of γ1

180

190

200

210

220

230

240

M
e
a
su

re
d

E
n
d
-t

o
-E

n
d

la
te

n
c
y

(m
s) With Budget Reclamation

Without Budget Reclamation

Fig. 13: Observed latency of consecutive instances of γ1 on
the hardware platform.

Fig. 13 presents the measurement results. If budget reclama-
tion is not enabled, the observed latency is 228 ms. If budget
reclamation is enabled, chain γ1 can use the idle time to
execute, completing earlier and allowing to reduce the end-to-
end latency to 184 ms. There is a small spike at t = 40, where
the latency goes up. This is attributed to the overhead imposed
by logging functionalities and other OS-related activities that
cause additional contention on the cores.

VI. RELATED WORK

To the best of our knowledge, no previous work provided
a response-time analysis and design principles for real-time
applications running on QNX. The only work closely related
work is due to Dasari et al. [10], who experimentally compared
different configurations of QNX in simulation, and showed
that some of them may lead to unpredictable response times.

In the last years, a lot of attention has been given to the
problem of studying the end-to-end response time of event
chains, which are also studied in this work. Most closely to
us, Casini et al. [17] provided a response-time analysis for
chains running on ROS 2 using resource reservations. Blass
et al. [7] proposed an automated method for using the ROS 2
analysis to select the parameters required by the resource reser-
vation mechanism implemented by the SCHED_DEADLINE
scheduling class [6] of Linux. Both of them used supply-bound
functions to model the minimum amount of service provided
by the system: we believe that the results of this paper may
also be used as a building block for deriving an analysis for
ROS 2 applications running on QNX. Other works proposed
analyses or scheduling mechanisms for ROS 2 [19, 23, 24]
and other middlewares affecting scheduling [25]–[28].

Concerning the analysis of event chains, multiple research
directions have been followed in the past. This paper builds

upon the CPA [9, 29] techniques, for which multiple exten-
sions have been proposed over the years [30, 31]. Thiele et
al. [32] proposed the real-time calculus, an analysis approach
based on network calculus [20] sharing some aspects of
CPA. Tindel et al. [33, 34] proposed a holistic response time
analysis that considers transactions (sequential task chains)
that can spread over multiple processing nodes, connected by
a network. The methods has been later extended to account for
dynamic offsets [35], precedence constraints [36], to improve
the analysis accuracy [37] and to support hierarchical time
partitioned scheduling [38]. Becker et al. [39] proposed meth-
ods to bound the maximum data age of cause-effect chains in
automotive systems, also considering the Logical Execution
Time (LET) paradigm [40, 41]. A method to compute the
different end-to-end delays of multi-rate cause-effect chains
is presented in [42], however, the authors do not focus on
reservations. Another research direction studied the timing be-
havior of time-triggered [43]–[46] (i.e., asynchronous) chains
either considering implicit communication or using the LET
paradigm. Precedence constraints have also been studied in
the context of parallel real-time tasks [47]–[50]. Most relevant
to us are those works targeting partitioned scheduling [51]–
[53], which, however, do not support DAGs with multiple
sources triggered at different rates and a per-thread priority
assignment. Finally, a relevant branch of related research
consists in the study of resource reservation mechanisms:
many different reservation algorithms have been proposed over
the years (e.g., [54, 55]) working under different scheduling
schemes. One of the seminal works is due to Shin and Lee [2],
who proposed the periodic resource model, which has been
used as a basis for many subsequent derivations of supply-
bound functions [56]–[58].

VII. CONCLUSIONS

This paper proposed a deep investigation of the real-time
behavior of the APS scheduler of QNX, proposing a model
for event chains running in QNX under APS. The model
has been validated with an extensive set of experiments. By
leveraging the model, a real-time analysis to bound the end-
to-end delay of event chains has been proposed. Furthermore,
we presented the results of an experimental evaluation we
performed to evaluate different design strategies on a real
autonomous construction vehicle case study. In addition, we
discussed some practical issues related to the time accounting
in QNX, and on the way precedence constraints can be
correctly implemented when working with APS.

Interesting research directions for future work include the
investigation of priority assignment schemes [59]–[61], the
consideration of time-driven chains [45], e.g., under the LET
paradigm [46], the comparison with other schedulers like
SCHED_DEADLINE, and the derivation of optimization strate-
gies to simultaneously optimize budgets, priorities, and the
threads-to-core allocation.

REFERENCES

[1] A. Biondi, G. C. Buttazzo, and M. Bertogna, “Schedulability analysis
of hierarchical real-time systems under shared resources,” IEEE Trans-
actions on Computers, vol. 65, no. 5, pp. 1593–1605, 2016.

[2] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in 24th IEEE Real-Time Systems Symposium, 2003.

[3] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memguard:
Memory bandwidth reservation system for efficient performance iso-
lation in multi-core platforms,” in 2013 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2013, pp.
55–64.

[4] F. Farshchi, Q. Huang, and H. Yun, “Bru: Bandwidth regulation unit for
real-time multicore processors,” in 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2020.

[5] Blackberry QNX, Adaptive Partitioned Scheduler User Guide – QNX®

Software Development Platform 7.1, 2021.
[6] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli, “Deadline scheduling

in the Linux kernel,” Software: Practice and Experience, vol. 46, no. 6,
pp. 821–839, 2016.

[7] T. Blass, A. Hamann, R. Lange, D. Ziegenbein, and B. B. Brandenburg,
“Automatic Latency Management for ROS 2: Benefits, Challenges,
and Open Problems,” in Proceedings of the 27th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2021.

[8] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, Third Edition. Springer, 2011.

[9] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the SymTA/S approach,” IEEE
Proceedings - Computers and Digital Techniques, March 2005.

[10] D. Dasari, A. Hamann, H. Broede, M. Pressler, and D. Ziegenbein,
“Brief industry paper: Dissecting the qnx adaptive partitioning sched-
uler,” in 2021 IEEE 27th Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2021, pp. 477–480.

[11] A. Biondi and Y. Sun, “On the ineffectiveness of 1/m-based interference
bounds in the analysis of global edf and fifo scheduling,” Real-Time
Systems, vol. 54, no. 3, pp. 515–536, 2018.

[12] B. B. Brandenburg and M. Gül, “Global scheduling not required: Simple,
near-optimal multiprocessor real-time scheduling with semi-partitioned
reservations,” in 2016 IEEE Real-Time Systems Symposium (RTSS),
2016, pp. 99–110.

[13] “https://www.qnx.com/developers/docs/6.3.0sp3/neutrino/sys arch.”
[14] Blackberry QNX, QNX® Neutrino® RTOS Programmer’s Guide –

QNX® Software Development Platform 7.1, 2020.
[15] “https://lore.kernel.org/lkml/20210208073554.14629-3-

juri.lelli@redhat.com/.”
[16] Blackberry QNX, Getting Started with QNX® Neutrino®: A Guide for

Realtime Programmers – QNX® Software Development Platform 7.1,
2020.

[17] D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg, “Response-
time analysis of ros 2 processing chains under reservation-based schedul-
ing,” in 31st Euromicro Conference on Real-Time Systems (ECRTS
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[18] S. Bozhko and B. B. Brandenburg, “Abstract Response-Time Analysis: A
Formal Foundation for the Busy-Window Principle,” in 32nd Euromicro
Conference on Real-Time Systems (ECRTS 2020), vol. 165, 2020, pp.
22:1–22:24.

[19] Y. Tang, Z. Feng, N. Guan, X. Jiang, M. Lv, Q. Deng, and W. Yi,
“Response time analysis and priority assignment of processing chains
on ros2 executors,” in 2020 IEEE Real-Time Systems Symposium (RTSS).
IEEE, 2020, pp. 231–243.

[20] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Berlin, Heidelberg: Springer-
Verlag, 2001.

[21] J. Diemer, P. Axer, and R. Ernst, “Compositional performance analysis in
python with pycpa,” in Proceedings of the Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS),
2012.

[22] M. Gallardo and S. Chakraborty, “Decision making for autonomous
construction vehicles,” Master’s thesis, Mälardalen University, 2019.

[23] T. Blaß, D. Casini, S. Bozhko, and B. B. Brandenburg, “A ROS 2
response-time analysis exploiting starvation freedom and execution-time
variance,” in 2021 IEEE Real-Time Systems Symposium (RTSS), 2021,
pp. 41–53.

[24] H. Choi, Y. Xiang, and H. Kim, “Picas: New design of priority-driven
chain-aware scheduling for ros2,” 2021.

[25] D. Casini, A. Biondi, and G. Buttazzo, “Analyzing parallel real-time
tasks implemented with thread pools,” in Proceedings of the 56th Annual
Design Automation Conference 2019, ser. DAC ’19, 2019.

[26] M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M. Bertogna, and
E. Quiñones, “Timing characterization of openmp4 tasking model,” in
2015 International Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES), 2015.

[27] D. Casini, A. Biondi, and G. Buttazzo, “Timing isolation and improved
scheduling of deep neural networks for real-time systems,” Software:
Practice and Experience, vol. 50, no. 9, pp. 1760–1777, 2020.

[28] J. Sun, N. Guan, Y. Wang, Q. He, and W. Yi, “Real-time scheduling
and analysis of openmp task systems with tied tasks,” in 2017 IEEE
Real-Time Systems Symposium (RTSS), Dec 2017.

[29] J. Rox and R. Ernst, “Compositional performance analysis with im-
proved analysis techniques for obtaining viable end-to-end latencies in
distributed embedded systems,” Int. J. Softw. Tools Technol. Transf.,
vol. 15, no. 3, 2013.

[30] S. Schliecker and R. Ernst, “A recursive approach to end-to-end
path latency computation in heterogeneous multiprocessor systems,”
in Proceedings of the 7th IEEE/ACM International Conference on
Hardware/Software Codesign and System Synthesis, ser. CODES+ISSS
’09, 2009.

[31] J. Schlatow and R. Ernst, “Response-time analysis for task chains
with complex precedence and blocking relations,” ACM Trans. Embed.
Comput. Syst., vol. 16, no. 5s, Sep. 2017.

[32] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in 2000 IEEE International Sym-
posium on Circuits and Systems. Emerging Technologies for the 21st
Century. Proceedings, May 2000.

[33] K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systems,” Microprocessing and microprogram-
ming, vol. 40, no. 2-3, pp. 117–134, 1994.

[34] K. Tindell, “Adding time-offsets to schedulability analysis. department
of computer science, university of york,” Technical Report YCS-221,
Tech. Rep., 1994.

[35] J. C. Palencia and M. G. Harbour, “Schedulability analysis for tasks
with static and dynamic offsets,” in Proceedings 19th IEEE Real-Time
Systems Symposium (RTSS). IEEE, 1998, pp. 26–37.

[36] ——, “Exploiting precedence relations in the schedulability analysis
of distributed real-time systems,” in Proceedings 20th IEEE Real-Time
Systems Symposium (Cat. No. 99CB37054). IEEE, 1999, pp. 328–339.

[37] J. Mäki-Turja and M. Nolin, “Efficient implementation of tight response-
times for tasks with offsets,” Real-Time Systems, vol. 40, no. 1, pp.
77–116, 2008.

[38] A. Amurrio, E. Azketa, J. J. Gutierrez, M. Aldea, and M. G. Harbour,
“Response-time analysis of multipath flows in hierarchically-scheduled
time-partitioned distributed real-time systems,” IEEE Access, vol. 8, pp.
196 700–196 711, 2020.

[39] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “End-
to-end timing analysis of cause-effect chains in automotive embedded
systems,” Journal of Systems Architecture, vol. 80, pp. 104 – 113, 2017.

[40] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-
triggered language for embedded programming,” in International Work-
shop on Embedded Software. Springer, 2001, pp. 166–184.

[41] A. Biondi and M. Di Natale, “Achieving predictable multicore execution
of automotive applications using the let paradigm,” in Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2018.

[42] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A Compositional
Framework for End-to-End Path Delay Calculation of Automotive
Systems under Different Path Semantics.” in Proceedings of the IEEE
Real-Time System Symposium, Workshop on Compositional Theory and
Technology for Real-Time Embedded Systems,, (2008).

[43] A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and
A. Sangiovanni-Vincentelli, “Period optimization for hard real-time
distributed automotive systems,” in 2007 44th ACM/IEEE Design Au-
tomation Conference, June 2007.

[44] T. Kloda, A. Bertout, and Y. Sorel, “Latency analysis for data chains of
real-time periodic tasks,” in 2018 IEEE 23rd International Conference
on Emerging Technologies and Factory Automation (ETFA), vol. 1, 2018,
pp. 360–367.

[45] M. Günzel, K.-H. Chen, N. Ueter, G. von der Brüggen, M. Dürr, and
J.-J. Chen, “Timing analysis of asynchronized distributed cause-effect

chains,” in 2021 IEEE 27th Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 2021, pp. 40–52.

[46] P. Pazzaglia, A. Biondi, and M. Di Natale, “Optimizing the functional
deployment on multicore platforms with logical execution time,” in 2019
IEEE Real-Time Systems Symposium (RTSS), 2019, pp. 207–219.

[47] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time
scheduling for generalized parallel task models,” in 2011 IEEE 32nd
Real-Time Systems Symposium, 2011.

[48] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel real-
time tasks on multi-core processors,” in 2010 31st IEEE Real-Time
Systems Symposium, Nov 2010.

[49] J. Fonseca, G. Nelissen, and V. Nélis, “Improved response time analysis
of sporadic DAG tasks for global FP scheduling,” in Proceedings of the
25th International Conference on Real-Time Networks and Systems, ser.
RTNS ’17, 2017.

[50] Q. He, x. jiang, N. Guan, and Z. Guo, “Intra-task priority assignment
in real-time scheduling of dag tasks on multi-cores,” IEEE Transactions
on Parallel and Distributed Systems, vol. 30, no. 10, pp. 2283–2295,
2019.

[51] F. Aromolo, A. Biondi, G. Nelissen, and G. Buttazzo, “Event-driven
Delay-induced Tasks: Model, Analysis, and Applications,” in 2021 IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2021.

[52] J. Fonseca, G. Nelissen, V. Nelis, and L. M. Pinho, “Response time
analysis of sporadic dag tasks under partitioned scheduling,” in 2016
11th IEEE Symposium on Industrial Embedded Systems (SIES), 2016,
pp. 1–10.

[53] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “Partitioned fixed-
priority scheduling of parallel tasks without preemptions,” in 2018 IEEE
Real-Time Systems Symposium (RTSS). IEEE, 2018, pp. 421–433.

[54] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard
real-time systems,” in Proceedings of the 19th IEEE Real-Time Systems
Symposium (RTSS 1998), Madrid, Spain, December 2-4 1998.

[55] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo, “Iris: a new reclaim-
ing algorithm for server-based real-time systems,” in Proceedings. RTAS
2004. 10th IEEE Real-Time and Embedded Technology and Applications
Symposium, 2004., May 2004.

[56] D. Casini, L. Abeni, A. Biondi, T. Cucinotta, and G. Buttazzo, “Constant
bandwidth servers with constrained deadlines,” in Proceedings of the
25th International Conference on Real-Time Networks and Systems, ser.
RTNS ’17, 2017.

[57] G. Lipari and E. Bini, “Resource partitioning among real-time appli-
cations,” in 15th Euromicro Conference on Real-Time Systems, 2003.
Proceedings., July 2003, pp. 151–158.

[58] E. Bini, M. Bertogna, and S. Baruah, “Virtual multiprocessor platforms:
Specification and use,” in 2009 30th IEEE Real-Time Systems Sympo-
sium, 2009, pp. 437–446.

[59] R. I. Davis, L. Cucu-Grosjean, M. Bertogna, and A. Burns, “A review
of priority assignment in real-time systems,” Journal of systems archi-
tecture, vol. 65, pp. 64–82, 2016.

[60] J. G. Garcı́a and M. G. Harbour, “Optimized priority assignment for
tasks and messages in distributed hard real-time systems,” in Proceed-
ings of Third Workshop on Parallel and Distributed Real-Time Systems.
IEEE, 1995, pp. 124–132.

[61] M. Richard, P. Richard, F. Cottet, D. Dietrich, P. Neumann, and
J. Thomesse, “Task and message priority assignment in automotive
systems,” in 4th FeT IFAC conference on fieldbus systems and their
applications, vol. 15, 2001, p. 16.

